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Abstract—Individuals with lower extremity impairments often
face significant mobility challenges, as current control strategies
for transtibial prostheses and exoskeletons may not be ade-
quately adapted to varied environments and user-specific needs.
Traditional control methods, such as finite-state machines and
impedance control, can be limited in their ability to handle the dy-
namic and complex nature of human locomotion. To address these
limitations, our research explores the application of deep learning
techniques to control transtibial prostheses and exoskeletons to
improve mobility for individuals with lower extremity limitations.
We compare imitation learning (IL) and deep reinforcement
learning (RL) approaches to develop adaptive control policies for
ankle assistive devices, and evaluate their produced locomotion
performance against expert human locomotion models. Using the
MuJoCo physics engine and Loco-MuJoCo framework, we imple-
mented a two-agent imitation learning framework: a Variational
Adversarial Imitation Learning (VAIL) agent that controls the
humanoid body and a separate agent that manages control of
the ankle-level assistive device. We compared the performance
of this IL ankle controller to a Proximal Policy Optimization
(PPO) based RL model controller of the same ankle-level assistive
device. We achieved promising results with both approaches:
both the IL and RL frameworks successfully produce ankle
controller outputs for a transtibial prosthesis that reproduce
normal walking gait behavior. However, the IL framework
produced much better results, with the humanoid model able
to walk much longer compared to the RL model controller. The
imitation learning controller was also able to mimic the expert
human gait cycle with more accuracy than the reinforcement
learning model, even with decreasing input data. This work
demonstrates the potential of imitation and deep reinforcement
learning approaches for developing adaptable, user-compatible
prosthetic controllers that can function effectively across diverse
environments and user conditions.

I. INTRODUCTION

Approximately 150,000 people undergo a lower extremity
amputation each year [1], and in people over 40 years of
age with both diagnosed diabetes and lower extremity disease,
33% reported difficulty walking a quarter mile and climbing 10
steps without rest [2]. The application of machine learning for
problem-solving has been revolutionized over the last decade.
These advancements have led to groundbreaking developments
in a multitude of fields, especially in robotics and controls.

Particularly, advancements in reinforcement learning [3] have
produced highly effective algorithms to solve complex control
problems without the need for explicit dynamic models, which
can be difficult to implement. We intend to use these advances
to address mobility issues in patients with limited lower body
control.

There are many modern approaches to this challenge that
use traditional control methods, such as adaptive whole-body
dynamics with joint torque output [4]. These strategies have
proven to be highly effective. However, they lack one key
requirement: adaptability and compatibility between different
users and environments. Recently, an increasing number of
approaches have been published that utilize reinforcement
learning as the primary adaptive control algorithm to learn
weights and parameters for a controller to input torques into
a prosthetic or an exoskeletal device. This enables the devices
to apply appropriate torques and maintain weight balance to
mimic ankle kinematics [5].

Our work builds on recent advances by comparing two
custom control pipelines: one that uses imitation learning (IL)
and another using deep reinforcement learning (RL) to train
policies to understand ankle kinematics and human gait con-
trol. We first use IL to efficiently bootstrap the agent’s walking
behavior from expert demonstrations, providing a structured
prior that avoids unstable or random exploration during early
training. This structured prior is then used as the base model
to train an ankle controller. One ankle controller model is
trained using IL to learn the behavior of the ankle from
the expert controller. Separately, we train another controller
using RL with a custom reward function that emphasizes
survival. Finally, we developed a comprehensive set of metrics
to evaluate the kinematics, kinetics and gait cycles of the
deployed IL and RL ankle controllers against the baseline
expert human model.

Our results show that training an ankle actuator using
imitation learning produced the best results, as the agent is
able to walk for much longer than the reinforcement learning
agent in most cases. Even with decreasing number of state
inputs to the agent, the IL ankle controller still produced



effective walking behavior. However, we did observe a trend
of decreasing number of steps and increasing error in ankle
torque and angles as the number of state inputs decreased.
Additionally, we compared the walking gait cycles of the
IL and RL agents against the expert human baseline using
simultaneous rollouts and plotting of ankle angles. From this,
we observed high similarity in the walking behavior of the IL
agents with the expert behavior, and less agreement between
the RL agent and the expert model.

II. RELATED WORK

A. Modern Control Methods for Assistive Devices

Current assistive devices like prosthetics and exoskeletons
rely on actuators to provide external forces to assist or mimic
the function of an individual’s limbs in everyday tasks. This
means that advanced control methods have to be applied in
order to increase the usability of these devices in a wide range
of scenarios, from sitting and standing to running. As a result,
a variety of control methods have been proposed for achieving
these desired functionalities.

1) Model-based Control: Model-based control methods
employ mathematical models of the system to create and
test control strategies. Impedance control is widely used in
exoskeletons to regulate the dynamic relationship between the
device and user [6]. This approach enables compliant human-
robot interactions that prioritize safety and comfort. Model
predictive control (MPC) has shown effectiveness in prosthet-
ics by anticipating future states and optimizing trajectories
while respecting constraints. Manchola et al. [7] demonstrated
an MPC framework for powered ankle prostheses that balances
performance with power consumption. These approaches per-
form well when accurate models are available but struggle with
the inherent complexity and variability of human movement
and unpredictable environments.

2) Model-free Control: Model-free control methods over-
come the limitations of explicit modeling by establishing
direct mappings between sensor inputs and control outputs.
Electromyography (EMG)-based control is particularly preva-
lent, using muscle activity signals to predict user intent.
Woodward and Hargrove [8] developed a real-time EMG
pattern recognition system for lower limb prostheses that
classifies locomotion modes with high accuracy. Finite state
machines offer another approach, as demonstrated by Young
et al. [9], who implemented an intent recognition system for
powered lower limb prostheses using mechanical sensors to
transition between activity modes. Sensor fusion techniques
that combine multiple data sources have further improved
robustness and adaptability, as shown by Li et al. [10] in
their real-time adaptive assistance system for exoskeletons.
The drawbacks of these approaches is that they are often
fine tuned to individual users and specific conditions, making
them less adaptable to variations across different people and
dynamic environments as well as a difficulty scaling these
solutions.

3) Deep Learning Methods: Deep learning approaches rep-
resent the cutting edge in prosthetic and exoskeleton con-
trol, offering powerful tools for handling complex, high-
dimensional data without explicit modeling. Reinforcement
learning (RL) has emerged as particularly promising for de-
veloping adaptive controllers. Wen et al. [11] demonstrated
how deep RL can learn to generate appropriate torque com-
mands for a powered prosthetic leg across different walking
conditions. Imitation learning combines aspects of supervised
learning and RL to develop controllers that mimic expert
behavior. Idzikowski et al. [12] used this approach to train
neural network policies that reproduce natural ankle prosthe-
sis behavior. Recent work has explored integration of these
methods. Chen et al. [13] proposed a model-based reinforce-
ment learning framework that learns dynamics models while
optimizing control policies. This hybrid approach combines
sample efficiency with adaptability. Zhang et al. [14] pushed
this further with a personalized assistance policy that contin-
uously adapts to user fatigue and environmental conditions
using meta-learning techniques, enabling rapid adaptation to
new users with minimal calibration. Unlike traditional model-
free control methods that rely on reactive mappings from
sensor data to actions, these learning-based approaches can
generalize across users and environments by optimizing over
long-term outcomes. Deep reinforcement learning methods
are also more sample efficient, as data is collected from
simulation as opposed to physical data collection with the
user. By combining the structure of imitation learning with
the adaptability of reinforcement learning, they offer greater
robustness and personalization without requiring extensive
manual tuning or per-user calibration.

Despite these advances, challenges remain in developing
practical control systems. Sample efficiency is critical for
reinforcement learning approaches, as collecting real-world
human interaction data is time-consuming. Sim-to-real transfer
techniques, as explored by Song et al. [15], offer solutions by
pre-training policies in simulation. Additionally, personaliza-
tion remains essential due to individual differences in anatomy
and movement patterns. Our work builds upon these advances
by comparing two approaches: one using imitation learning
and a second using deep reinforcement learning specifically for
ankle kinematics and human gait locomotion control. We want
to validate the training sample efficiency and environment
adaptability of these methods, which are features that address
the key limitations of existing methods. A comparison of these
two approaches will provide insight into the most effective
approach in creating robust, effective prosthesis controllers.

III. METHODS

The aim of this study is to develop and evaluate an ankle
prosthesis with a single degree of freedom (DoF) that enables
stable bipedal locomotion through reinforcement learning (RL)
and imitation learning (IL). A central challenge is that, while
a reference humanoid agent observes the complete state of all
joints, the prosthetic ankle must rely on a restricted subset of
states.



Fig. 1. Visualization of where the 36 states and 12 actions are located on the
humanoid model.

A. Environment Selection

All simulations were carried out in MuJoCo (Multi-Joint
dynamics with Contact) [16], a physics engine optimized for
articulated-body dynamics, accurate contact handling, and fast
numerical integration.

B. Humanoid Model Selection

The humanoid model employed is the torque-based hu-
manoid from Loco-Mujoco [17]. Loco-Mujoco is a physics-
based reinforcement learning framework designed for sim-
ulating locomotion in humanoid and legged robots. Loco-
Mujoco provides realistic control mechanisms and allows for
the application of torque-based actuation, which simplifies the
complexity of muscle excitations while maintaining biolog-
ically plausible joint structures. The humanoid model used
in this study consists of 36 state variables that represent the
kinematic properties of the agent and 12 action outputs that
govern the joint torques. As illustrated in Fig. 1, different
states and actions are located in various joints in the humanoid
model, which focuses on the joints of the lower body in
particular. Detailed representations of state and action are
illustrated in Tables I and IV. Torque-driven control was
chosen over muscle-driven models in this study because the
primary focus is on the plausibility of gait kinematics rather
than muscle activations. Additionally, muscle-driven models
are computationally expensive, making them impractical for
our current framework.

C. Prosthetic Leg Model

To demonstrate algorithm robustness with respect to limb
properties, we incorporated an open-source prosthesis from the
University of Michigan Neurobionics Lab1. The original knee
actuator was replaced by a rigid socket so that only the ankle
is powered. The final mass distribution—0.4 kg socket, 0.6 kg
motor, 0.5 kg foot—is illustrated in Fig. 2.

1https://neurobionics.robotics.umich.edu/research/wearable-robotics/
open-source-leg

Fig. 2. Mass distribution the open source leg developed by the University
of Michigan Neurobionics Lab. In this study, the knee actuator of this leg is
eliminated since we only focuses on the ankle actuator.

Fig. 3. Flowchart illustrating the two-agent system used for training the
humanoid model with an ankle prosthesis. The VAIL agent (Agent 1) learns
from expert data to control the humanoid, while the MLP-based prosthesis
agent (Agent 2) learns to predict ankle actions based on filtered state
information.

D. Baseline via Variational Adversarial Imitation Learning
(VAIL)

A baseline expert walking agent was first trained with Vari-
ational Adversarial Imitation Learning (VAIL) on the public
Loco-MuJoCo dataset. In this reference agent the ankle torque
is produced directly by the VAIL policy; in the prosthesis
experiments it is supplied by a separate IL/RL controller
constrained to the reduced state space.

E. Imitation Learning Approach

A multilayer perceptron (MLP) was trained to replicate the
expert ankle torque by minimizing the mean-squared error
between its predictions and the expert output (Fig. 3). During
inference (Fig. 4) the VAIL expert generates 12 torques, after
which the MLP output overwrites the right-ankle torque.

F. Reinforcement Learning Implementation

Building upon the IL implementation, three Proximal Policy
Optimization (PPO) variants were examined:

1) Vanilla policy gradient: unstable in continuous control.
2) Basic PPO: gradient clipping improved stability but

remained sensitive to sparse rewards.

https://neurobionics.robotics.umich.edu/research/wearable-robotics/open-source-leg
https://neurobionics.robotics.umich.edu/research/wearable-robotics/open-source-leg


Fig. 4. Diagram showing the evaluation of the system, demonstrating the
mapping from 36 state inputs into 12 action outputs by combining the action
space of the two agents implemented.

3) Enhanced PPO: added generalized-advantage estima-
tion (GAE), randomized batch sampling, and policy
reuse, yielding the most consistent learning.

The reward function was

R =

{
+1, for each successful step,

−100, when _has_fallen() is triggered.
(1)

The _has_fallen() predicate flags excessive pelvic tilt
or height loss.

Qualitative assessment showed that the enhanced PPO agent
achieved sustained, upright walking with human-like gait
patterns.

IV. EXPERIMENT

We compared ankle kinematics (angle) and kinetics (torque)
for the expert, IL, and RL agents. For each controller three
roll-outs were executed with an identical random seed. As
summarized in Fig. 5, raw signals were low-pass filtered,
segmented into ten gait cycles, and time-normalized to a single
gait period. Mean absolute error (MAE) versus the expert
profile was leveraged to quantify performance.

Experiments covered three observation sets (36, 22, and 16
states) and both the original and prosthetic limb properties.
The reduced state lists are provided in Tables II and III.

V. RESULTS

Fig. 6 reports kinematic and kinetic MAE across all con-
ditions; Fig. 7 shows the mean number of simulation steps
completed before a fall.

The MLP-based IL controller consistently outperformed the
PPO agent, achieving kinematic MAE of 2.29◦−4.59◦ and
torque MAE of 4.07−10.19 N m, all within 3% of the expert
trajectories. Performance was insensitive to state-space size
and limb properties. In contrast, PPO results deteriorated with
both reduced observability and prosthetic dynamics, although

Fig. 5. Flowchart illustrating how kinematics/kinetics data are collected,
processed, and compared in the experiment setup.

Fig. 6. Comparison of IL and RL agents regarding kinematics (top) and
kinetics (bottom) mean absolute error (MAE) between original and prosthesis
conditions across different input state dimensions (36, 22, and 16 states).

the agent maintained over 2000 steps before failure at full
observability.

Overall, both controllers generalized to the prosthetic con-
figuration, but IL provided superior tracking accuracy and
stability.

VI. DISCUSSION AND CONCLUSION

The performance results of our experiments provide valu-
able insights into the comparative effectiveness of imitation
learning (IL) versus reinforcement learning (RL) approaches
for ankle prosthesis control. Our findings demonstrate that im-
itation learning significantly outperforms reinforcement learn-
ing in terms of both kinematic and kinetic accuracy, as well
as overall walking stability.



Fig. 7. Comparison of IL and RL agents in terms of the number of steps
walked before falling, across original and prosthesis conditions with varying
input state dimensions (36, 22, and 16 states).

A. Kinematic and Kinetic Performance Analysis

IL agents consistently achieved lower mean absolute error
(MAE) values for ankle angle (2.29° to 4.59°) and joint
torque (4.07 to 10.19 Nm), representing deviations of less than
3% from expert trajectories. In contrast, RL agents exhibited
substantially higher kinematic MAE (3.44° to 13.18°) and
kinetic MAE (14.57 to 34.77 Nm). This superior performance
of IL was maintained across all state space dimensions and in
both original and prosthetic limb configurations.

Our detailed gait cycle analysis revealed that IL agents pro-
duced smooth, consistent ankle angle trajectories that closely
matched the expert data across the full gait cycle. This was
particularly evident in our phase plots, where we visualized
the relationship between ankle angle and angular velocity
throughout the stride. The IL agents maintained near-identical
phase relationships to the expert model, indicating biomechan-
ically appropriate control patterns that preserve natural ankle
dynamics.

The IL approach showed remarkable resilience to state space
reduction, with only minimal performance degradation as the
input dimension was reduced from 36 to 22 states (increasing
from 2.29° to 2.86° MAE in the prosthetic condition). How-
ever, further reduction to 16 states resulted in more noticeable
accuracy losses (3.44° MAE), particularly in the prosthetic
configuration. This suggests that while some state information
is redundant, certain proprioceptive signals remain critical for
accurate ankle control, especially when adapting to altered
limb dynamics.

B. Stability and Locomotion Endurance

The stability analysis further confirms the superiority of
the IL approach, with IL agents consistently maintaining
significantly longer walking durations before falling compared
to their RL counterparts. In the original body configuration
with 36 states, the IL agent achieved the maximum simulation
length of 10,000 steps (1 step = 0.01 seconds) without falling,
while the RL agent managed only 2,230 steps (see Fig. 7).
This performance gap widened further in the prosthetic con-

figuration, where the 22-state IL agent still achieved 10,000
steps compared to just 331 steps for the RL counterpart.

Our time-normalized gait cycle visualizations revealed that
RL agents struggled to maintain consistent ankle behavior
across multiple consecutive strides, with increasing variability
over time that eventually led to instability and falling. This was
particularly evident in the 16-state condition, where the RL
agent exhibited oscillatory behavior that diverged significantly
from the reference trajectory, causing premature termination
of walking episodes.

C. Model Architecture and Learning Approach Comparison

RL agents demonstrated greater sensitivity to both state
space dimensionality and physical property changes. When
limited to 16-state observations, RL controllers not only
showed increased kinematic and kinetic MAE values but
also exhibited qualitatively different ankle behavior patterns,
sometimes producing counterproductive movements as seen
in the phase plots. This suggests that the sparse reward
signal (+1 for each successful step, -100 for falling) provides
insufficient guidance for learning optimal ankle control in
isolation, particularly with reduced state information.

A notable finding is that simpler multilayer perceptron
(MLP) architectures consistently outperformed more complex
networks such as transformers in both IL and RL implemen-
tations. This aligns with previous research suggesting that
for continuous control problems with well-structured state
spaces, the inductive bias of simpler feed-forward networks
often proves advantageous. The more complex architectures
likely suffer from overfitting to the training data without
capturing the fundamental biomechanical principles governing
ankle function during locomotion.

D. Live Plotting and Comparative Analysis

Our live plotting methodology, seen in Figures 8 and 9,
provided critical insights into the real-time performance of
the controllers. By simultaneously visualizing the ankle joint
angles and torques of both the expert and learned controllers,
we could directly compare their kinematic and kinetic profiles
throughout the gait cycle. This approach revealed that IL
agents maintained remarkably consistent phase relationships
with expert data, preserving the characteristic plantar flexion
during push-off and dorsiflexion during swing phase, which
are essential for natural locomotion.

Our visualization showed that RL controllers, particularly
with reduced state inputs, struggled to maintain consistent
ankle behavior across consecutive strides. Their trajectory
plots showed increasing deviation from the expert pattern
over time, with some configurations even exhibiting reverse-
phase behavior (moving in opposition to the desired direction).
This was particularly evident in the 16-state RL controller
for the prosthetic configuration, where the phase relationship
between angle and angular velocity exhibited a completely
different pattern from the expert, resulting in biomechanically
inappropriate motion that quickly led to instability.



Fig. 8. Comparison of IL agent (red) and expert baseline (green) gait cycle
using ankle angular position, in flat ground, single speed walking. The 16
state IL agent demonstrates consistent phase relationships with the expert gait
cycle despite fewer state inputs.

Fig. 9. Comparison of RL agent (red) and expert baseline (green) gait cycle
using ankle angular position, in flat ground, single speed walking. The 16
state RL agent shows inconsistent phase relationships with the expert gait
cycle and discrepancies due to imperfect ankle controller outputs.

E. Implications for Prosthetic Control

Our results demonstrate a clear advantage of imitation learn-
ing over reinforcement learning for this specific ankle control
task. IL provides superior tracking accuracy and stability when
tasked with reproducing expert behavior. This suggests that
for applications where mimicking human-like gait patterns is
the primary objective, IL offers a more direct and effective
approach.

The RL approach, while less successful in our current
implementation, may still offer potential benefits in scenarios
requiring adaptation to novel environments or user-specific
needs that go beyond the expert demonstrations available.
However, our findings indicate that significant improvements
to the reward function, state representation, or training method-
ology would be necessary to make RL competitive with IL for
basic walking tasks.

The overall results demonstrate that both IL and RL-based
controllers can generalize to prosthetic configurations with
altered physical properties (e.g., reduced inertia), though with

varying degrees of success. This generalization capability
is essential for practical prosthetic applications where the
mechanical properties of the device will inevitably differ from
those of a biological limb. The superior performance of the
IL approach in this challenging transfer scenario further high-
lights its potential value for real-world prosthetic controller
development.

APPENDIX

A. Humanoid Model State and Action Definitions

The following tables provide definitions for the state and
action variables used in our Loco-MuJoCo torque-driven hu-
manoid model. These variables represent the kinematic and
control properties of the humanoid agent during simulation.

Each state variable is carefully bounded according to the
physical limitations of human biomechanics, with angular
positions having specific ranges (e.g., knee angle is limited be-
tween -2.094 and 0.175 radians) while velocities are generally
unbounded. The state vector provides sufficient information for
the neural network controllers to understand the humanoid’s
current configuration and motion state, enabling effective
learning of gait patterns and balance control for the prosthetic
ankle experiments described in the research.

TABLE I
COMPLETE STATE OBSERVATION - 36 STATES

Idx Description Min Max Unit

0 Joint pelvis ty −∞ ∞ m
1 Joint pelvis tilt −∞ ∞ rad
2 Joint pelvis list −∞ ∞ rad
3 Joint pelvis rotation −∞ ∞ rad
4 Joint hip flexion r −0.787 0.787 rad
5 Joint hip adduction r −0.524 0.524 rad
6 Joint hip rotation r −2.094 2.094 rad
7 Joint knee angle r −2.094 0.175 rad

8-16 Other position joints var. var. rad
17-19 Pelvis velocities −∞ ∞ m/s
20-22 Pelvis angular vel. −∞ ∞ rad/s
23-35 Joint velocities −∞ ∞ rad/s

Table I shows the full 36-state representation of the humanoid
model. These 36 states describe the positional and velocity
information of the relevant lower body joints of the humanoid
model. The first 17 dimensions (indices 0-16) correspond to
position values, including the pelvis position and orientation,
hip, knee, and ankle joint angles for both legs, and lumbar
spine positions. The remaining dimensions (indices 17-35)
represent velocity information, including linear and angular
velocities of the pelvis and joint angular velocities. This is
the default observation space that is available to the humanoid
torque model.



TABLE II
SUBSET OF 22 STATES USED IN EXPERIMENT

Idx Description Min Max Unit

0 Joint pelvis ty −∞ ∞ m
1 Joint pelvis tilt −∞ ∞ rad
2 Joint pelvis list −∞ ∞ rad

3-9 Other position joints var. var. rad
17-22 Pelvis velocities var. var. var.
23-28 Right-leg joint vel. −∞ ∞ rad/s

Table II presents a reduced 22-state representation of the
humanoid model. This subset focuses primarily on the pelvis
and right leg states, maintaining key positional and velocity
information while reducing dimensionality. This representation
was tested to determine how a reduced state space affects
the performance of learning algorithms and the quality of the
learned gait.

TABLE III
SUBSET OF 16 STATES USED IN EXPERIMENT

Idx Description Min Max Unit

0 Joint pelvis ty −∞ ∞ m
1 Joint pelvis tilt −∞ ∞ rad
2 Joint pelvis list −∞ ∞ rad

4-8 Other position joints var. var. rad
17-19 Pelvis velocities −∞ ∞ m/s
23-27 Right-leg joint vel. −∞ ∞ rad/s

Table III shows a further reduced state representation with only
16 dimensions. This minimal state vector focuses exclusively
on the pelvis and right leg, eliminating all information about
the left leg. This significant reduction in state dimensions
was evaluated to test the lower bounds of state information
needed for effective control policy learning in our prosthesis
experiments.

TABLE IV
NORMALIZED ACTION VECTOR (12 TORQUES)

Idx Action Min Max

0 mot lumbar ext −1 1
1 mot lumbar bend −1 1
2 mot lumbar rot −1 1

3-7 Right leg motors −1 1
8-12 Left leg motors −1 1

Table IV defines the normalized action vector that controls the
humanoid’s joint torques. This 12-dimensional action space
represents the control inputs for the lumbar, hip, knee, and
ankle joints. All actions are normalized to the range [-1, 1],
which are then mapped to appropriate torque values through
the actuator gear ratios defined in the MuJoCo simulation
model. These normalized values provide a standardized in-
terface for the reinforcement learning controller.
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