Multi Agent Reinforcement Learning with Large Language
Models for Safe Path Planning

Graves Reid, Allen Chase, Krishnan Shawn, Zhao Eric, Ali Jonathan

{rgraves, mcallen2, shawnakk, ericzhao,

ABSTRACT

Recent advancements in hierarchical multi-agent rein-
forcement learning (MARL) frameworks have enabled
quadrupedal robots to perform complex tasks such as
long-horizon, obstacle-aware object pushing [1]. How-
ever, these frameworks lack the ability to dynami-
cally adapt to sensitive and unpredictable environments,
where interactions with obstacles of varying severity
levels pose significant safety and efficiency challenges.

In this work, we extend a state-of-the-art MARL
framework by integrating large language models (LLMs)
as high-level controllers to introduce context-aware plan-
ning and execution capabilities. Using GPT-4, the sys-
tem classifies environmental objects by severity and
dynamically adjusts penalties for approaching sensitive
obstacles [2]-[4]. These penalties guide mid-level poli-
cies and influence the RRT-based high-level planning,
ensuring safe and efficient path generation while main-
taining task performance. Unlike traditional frameworks,
our approach introduces semantic reasoning to robotic
decision-making, creating a system capable of safely
interacting with unstructured, dynamic environments
[5]. Preliminary results demonstrate improved obstacle
avoidance for sensitive hazards, paving the way for fur-
ther exploration of LLMs as context-aware components
in robotic systems.

I. INTRODUCTION

Recent advancements in quadrupedal robots and hi-
erarchical multi-agent reinforcement learning (MARL)
frameworks have enabled robots to achieve complex
tasks such as long-horizon, obstacle-aware object push-
ing in multi-agent settings [1]. However, existing frame-
works often lack the capability to dynamically adapt to
environments with sensitive obstacles, such as humans
or objects of varying importance, limiting their opera-
tional safety and efficiency in real-world scenarios. To
address this gap, we propose integrating large language
models (LLMs) into the high-level controller of a hi-
erarchical MARL framework to enhance context-aware
planning and safety during task execution.

Our approach focuses on improving operational effi-
ciency and safety by incorporating the contextual dan-
gers associated with interacting in sensitive environ-

jhali}@andrew.cmu.edu

ments. For example, sensitive obstacles like humans are
assigned high severity levels, prompting greater operat-
ing distances. The LLM enhances subgoal generation in-
directly by leveraging severity levels to assign penalties
for approaching obstacles, which are incorporated into
the reward structure of the mid-level policy and used to
guide the RRT planner [6]. This creates a system capable
of prioritizing safety and efficiency, enabling trustworthy
decision-making in critical applications while fostering
user confidence and operational reliability.

The LLM, GPT-4, is utilized for interpreting the
prompts describing objects in the environment to classify
obstacles as low, medium or high severity. These clas-
sifications dynamically update the penalties associated
with approaching different obstacles, enabling robots
to navigate around them more effectively. While the
LLM does not directly generate subgoals, its semantic
understanding significantly refines obstacle-aware plan-
ning through the integration of classified obstacles, par-
ticularly in unstructured environments where sensitive
obstacles may move unpredictably. This integration adds
a layer of interpretability and adaptability previously
absent in MARL frameworks.

This proof-of-concept work introduces a novel ap-
plication of LLMs as controllers in multi-agent robotic
systems, focusing on dynamic penalty scaling rather than
traditional motion planning or direct subgoal generation.
To our knowledge, this is the first attempt to augment hi-
erarchical MARL with LLMs for obstacle composition-
based path planning. Despite limitations, such as the
non-deterministic nature of LLM agents, this approach
lays the groundwork for future studies to enhance robot
safety and decision-making capabilities. By integrating
semantic reasoning into hierarchical controllers, we aim
to extend Al safety and contextual intelligence to multi-
agent robotic systems, with applications ranging from
industrial automation to human-robot interaction in sen-
sitive environments.

II. RELATED WORKS

A. Isaac Gym

Isaac Gym [7] is a GPU-accelerated physics simu-
lation platform designed for robotics learning and rein-

forcement learning (RL). It integrates physics simulation
and neural network training entirely on the GPU, by-
passing CPU bottlenecks, and enabling training speeds
orders of magnitude faster than traditional CPU-based
simulators. By maintaining all computations on the
GPU, Isaac Gym supports tens of thousands of envi-
ronments running in parallel on a single GPU, allowing
researchers to conduct large-scale experiments locally
[7]. The platform leverages NVIDIA PhysX for high-
performance physics simulation and offers a PyTorch-
compatible tensor API to efficiently integrate observa-
tions and actions with RL frameworks. This end-to-end
GPU pipeline enables contact-rich robotic tasks, such as
dexterous manipulation and humanoid locomotion, to be
trained rapidly. These types of tasks are trained in the
IsaacGym environment using walktheseways [8] for sim-
to-real RL tasks such as those addressed in this paper.

B. Loco-Manipulation for Legged Robots

Recent advances in quadrupedal robots have focused
on improving locomotion and manipulation capabilities
[9]-[14]. Research in prehensile locomanipulation often
integrates grippers or robotic arms to expand operational
capabilities, while nonprehensile approaches use legs or
the robot’s head for manipulation tasks. While these
methods enhance dexterity and payload handling, they
often neglect complexities in multi-agent scenarios with
large, dynamic objects.

Efforts to combine locomotion and manipulation with
hierarchical reinforcement learning frameworks based
on optimization (HRL) have shown promise [2]-[4].
Murooka et al. introduced a planning framework for
humanoids to push large objects [15], while Rigo et
al. developed hierarchical control to optimize robot
contact strategies [3]. These contributions demonstrate
the potential of structured control frameworks but lack
the adaptability required for dynamic environments.

C. Multi-Agent Collaborative Manipulation

Multi-agent systems have demonstrated success in
collaborative manipulation, leveraging decentralized
control and reinforcement learning. Nachum et al. pro-
posed a two-level MARL framework for object-centric
navigation, while Xiong et al. explored MARL in com-
petitive tasks. However, these methods often neglect
safety-critical considerations, such as obstacle sensitivity
and dynamic penalties, which are crucial in real-world
applications.

Hierarchical frameworks for quadrupedal manipula-
tion, such as that of Hong et al., have made significant
strides in achieving obstacle-aware, long-horizon object
pushing. Their three-level architecture, integrating RRT-
based planning and decentralized policies, effectively
handles tasks like obstacle avoidance and long-distance

object pushing. However, it lacks context awareness
when interacting with sensitive obstacles, such as hu-
mans, which limits its safety applications.

D. Hierarchical Reinforcement Learning

HRL methods have been used to address long-horizon
tasks, with high-level policies generating sub-goals and
low-level controllers managing physical actions. Such
frameworks are particularly effective in multi-agent set-
tings, where centralized or decentralized policies coordi-
nate agent behaviors. Hong et al. applied a hierarchical
MARL framework with high success rates, yet its abil-
ity to adapt dynamically to unstructured environments
remains constrained [8].

E. Multi-Agent Collaborative Manipulation for Long-
Horizon Quadrupedal Pushing

These prior works culminate to the recently published
Multi-Agent Collaborative Manipulation for Long-
Horizon Quadrupedal Pushing (MA Push) project, which
reflects the current state of multi-agent prehensile object
manipulation. MA Push leveraged a three tier hierarchy
that enables effective large-object manipulation across
different objectives and examples. At the top, an RRT
planner generates a geometrically feasible trajectory
that neglects factors such as robot push capability and
other agents in the environment. The high-level adaptive
policy then uses this trajectory as a reference to assign
a sub-goal to the target object, ingesting a universal
state vector to assign commands to a low-level policy
responsible for assigning joint torques and facilitating
locomotion. The RRT planner is executed only once
at the start of each episode given its computational
overhead.

MA Push introduced a robust hierarchical MARL
framework for long-horizon, obstacle-aware object push-
ing, showcasing the potential of adaptive subgoal gen-
eration using an RRT-based planner and reward-driven
decentralized policies. However, its design assumes
static penalties for obstacles, limiting adaptability in
environments where obstacle sensitivity varies [1]. For
example, interactions with dynamic and sensitive ob-
stacles like humans or fragile objects require nuanced
hazard modeling and context-sensitive penalties, which
MA Push lacks. Our work addresses this limitation by
augmenting MA Push with context-aware navigation
and hazard adaptation through large language models
(LLMs).

III. METHODOLOGY

A. LLMs for Object Severity Classification

To minimize reliance on predefined contextual aware-
ness of an environment, we propose integrating LLMs

Hazard Level Safety Region I—

| Sleeping Baby I

Proposed Path

I Proposed Path With Safety Consideration I

Fig. 1: Proposed target path augmentation, taking into account obstacle context

into the pre-planning stage. This approach enables dy-
namic environmental recognition without requiring a
large dataset containing context-specific information or
the computational overhead of processing it. By con-
necting to pre-existing APIs, robots can access up-
to-date, contextually relevant information in real time,
significantly improving their path-planning capabilities.
This not only reduces the dependency on extensive data
collection and preparation, but also enhances robots’
ability to adapt quickly to dynamic and unstructured
environments, ensuring efficient and safe navigation.

In order to apply this concept into practice, we utilized
the Open Al GPT-40-mini, and GPT-3.5 model API’s in
order to retrieve severity metrics of objects that would
be located within an environment. Further analysis to
evaluate the metrics associated with various model’s
effects on the speed and reliability of using LLM is
beneficial.

We determined that due to modern advances in com-
puter vision, we would be able to determine what objects
would be present in an environment [5] so we can
reduce the informational dependency on LLM models
with this advancement in research. Given we have a
list of objects in an environment, we can then make
an API call to an LLM and allow it to label it with a
”severity.” In this context the use of the word “severity”
refer’s to a tri-label classification as to how far the
robot should maintain distance from a object which
is also implemented within the reinforcement learning
path planning control. We sent a customized prompt as
the API call to the LLM and then obtained a list with
severity of the various objects within the environment

and created a JSON file containing this information to
be passed to the High-Level RL path planner. We also
incorporated a failsafe default classification in the event
that an LLM call returns an unusable response, which
returns all values defaulted to medium.

One of the most integral aspects of using LLMs for
this purpose is to craft prompts that are capable of
consistently returning the requested information. This is
known as zero-shot prompting: [16] In our approach, we
augmented the principles of zero-shot prompting with
elements of few-shot prompting, designing prompts that
achieved a 94.1% success rate in retrieving the desired
severities on the first API request. This hybrid strat-
egy maximized reliability and minimized computational
overhead. This hybrid strategy maximized reliability and
minimized the number of API calls we were making,
which would lower the cost of running these programs
on scale.

LLM integration enables dynamic hazard penalty ad-
justment and path optimization for safer navigation. By
bridging semantic reasoning with RL-based control, our
method introduces an additional layer of safety and
adaptability to hierarchical MARL frameworks.

B. Reward Function Augmentation

To enable robots to perform long-range collabora-
tive tasks while considering context-sensitive obstacle
penalties, we propose an enhancement to the existing
MA Push framework that provides flexible sensitivity
to varying objects in the environment. The enhanced
framework consists of three hierarchical controllers,
described as follows: [1].

High-Level Controller: The high-level controller inte-
grates the RRT planner for global trajectory planning as
defined in MA Push. We augment this controller with a
GPT-40-mini-based module that classifies obstacles into
severity levels (low, medium, high) based on environ-
mental context and object descriptions. These classifica-
tions dynamically scale the risk penalties, which directly
influence both the subgoal generation process and the
reward structure for safe navigation.

Mid-Level Controller: The mid-level decentralized pol-
icy uses the adjusted rewards of the high-level controller
to guide agents toward sub-goals. These subgoals are
influenced by hazard penalties derived from obstacle
sensitivity, ensuring that agents prioritize safe naviga-
tion around sensitive obstacles while maintaining task
performance.

Low-Level Controller: The low-level controller executes
motor commands derived from mid-level velocity tar-
gets, as described in MA Push. This layer remains
unchanged from the original framework and focuses on
robust locomotion control for individual robots.

C. Reward Design

1) Mid-Level Reward: The mid-level reward function
is the same implementation used in [1]. The reward
function r™ = r’ . + rl’;’;nalty + T uristics 1S @ sum
of the reward for a mid-level task, the penalty, and a
heuristic reward function. The task reward ;7 _, incen-
tivizes actions that move the object toward the target
point. The penalty term 7, ;. penalizes agents for
close proximity, robot falls, and timeouts. The mid-level
heuristic reward ", is the sum of a mid-level
approach reward, a velocity reward, and an occlusion-
based reward [.....]. This heuristic reward is represented
as Tlrznéum'stic = rg;z;raaah + rzyzrél + rgLC'B' The midlevel
approach reward, ;. .p,» provides encouragement for
agents to approach the object, while the implementation
of the velocity reward r;?, introduces a predefined veloc-
ity threshold which, when exceeded, rewards agents and
promotes greater diversity and stability in pushing ac-
tions. The conclusion-based reward r@ -5 is as defined
in [1], where it is implemented to lead agents to more
optimal contact points in situations where robots’ views
of subgoals are obstructed. This reward term encourages
agents to target occluded surfaces, which can lead to
more effective push behavior.

2) High-Level Reward: The high-level reward function
is an augmented version of the MA Push high-level
reward implementation, defined as r" = rfas k+r;}enalty.
It consists of a high-level task reward term and a penalty
term. The task reward term rf , sparsely rewards the
achievement of the target goal and has more dense
rewards for the minimization of the distance between
the sub-goal and the nearest point on the RRT trajectory

and for reducing the distance between the target and
the object. This framework allows for adherence to the
RRT path while providing flexibility for complex push
tasks. The high-level penalty term r;"emlty incorporates
penalties for various cases, including close proximity
to obstacles and heavier penalties for certain exceptions
such as agents falling over, colliding, object tilting, and
timeouts. In addition to this existing high-level reward
framework, we introduce an additional penalty term that
penalizes agents based on their proximity to an object
given its hazard severity classification determined by the
GPT-40-mini LLM module. The objects have a given
hazard radius, which is a scalar value defined by the
hazard level of the object and the size of the object itself.
Using the Euclidean distance between the agent and
the center of an object, we can determine whether the
agent has entered an object’s hazard zone. This incurs a
penalty, which scales with how deep the agent is inside
the hazard zone (i.e., how close they are to the object).

Evaluating LLMs for Simple Path Planning in Multi-
Agent Systems:

In our work, we assessed the efficacy of Large Lan-
guage Models (LLMs), specifically OpenAl’'s GPT-4o-
mini, as a tool for path planning in multiagent systems,
particularly under conditions requiring obstacle aware-
ness. We leveraged conversational abilities of the LLM
to guide two agents through a series of 2D waypoints,
where optimal paths are generated between given start
and end points, considering step sizes and other con-
straints.

To evaluate the model, we developed a series of path-
planning interactions with the LLM, where the agents
were tasked with navigating from a starting point to a
target location in a two-dimensional space. The LLM
was asked for specific coordinates for each agent within
a proposed 5.0 m x 6.0 m grid and was tasked with pro-
viding the most efficient path between those points. The
agents’ paths were calculated based on step sizes, which
the LLM generated, and plotted using matplotlib for
visual verification. The core of the experiment centered
around the assistant’s ability to generate realistic paths
and navigate obstacles with safety in mind.The LLM’s
outputs were then compared to the “actual” path calcu-
lated using traditional Euclidean distance methods with
specified step sizes, allowing us to evaluate how close
the agent’s generated path was to optimal. The results of
this comparison were visualized through graphs showing
both LLM-generated and calculated linear paths.

The system initiates with a user input for start and
end points, followed by the LLM interaction to gen-
erate coordinates. The assistant’s responses are parsed
and visualized using a plotting tool, comparing the
generated path to the optimal path calculated based
on step size. The results were stored in a structured

JSON file, allowing easy tracking of both user inputs
and assistant responses, including path coordinates. This
method represents how well LLMs can contribute to
the decision-making and coordination of multi-agent
systems, where agents need to autonomously generate
paths while also considering dynamic and potentially
safety-critical obstacles in real-world environments.
Our results showed that, while the LLM success-
fully generated paths between the designated points,
deviations were observed when compared to the calcu-
lated optimal path. For instance, when navigating from
points (0, 0) to (2, 3), our generated linear paths had
a maximum y-error deviation of 5 percent, However,
from (2, 3) to (7, 8), we witnessed a 14 percent
maximum x-error deviation. This discrepancy highlights
the challenges of relying on a language model for
precise numerical tasks like path planning. However,
in environments where obstacle awareness and real-
time adaptability are paramount, the LLM demonstrated
potential for supporting decision-making by enabling
agents to dynamically classify obstacles and adjust their
behavior accordingly.For instance, the LLM’s semantic
understanding can aid in interpreting the presence of ob-
stacles (e.g., humans or moving objects) in the environ-
ment, as demonstrated in the prior work of hierarchical
reinforcement learning frameworks. The integration of
LLMs for obstacle classification can be instrumental in
multi-agent settings, where safety concerns such as col-
lision avoidance are crucial. Future work could further
explore integrating LLMs with reinforcement learning-
based agents, enabling them to generate subgoals based
on obstacle severity and the dynamic nature of the
environment, as discussed in the context of multi-agent
reinforcement learning (MARL) frameworks.

IV. EXPERIMENTS
A. LLM Setup

In setting up the LLM there where 2 main decisions
of how we could use the LLM for severity classi-
fication. The first was determining where or not to
use a nominal or categorical classification. The second
decision was in how we evaluated our performance of
the LLM’s classification. We created multiple appraches
and abodpting a final approach after evaluating multiple
methods, including a numeric scale from 1 to 10 and
a mapped categorization system where numeric values
were grouped into fixed ranges: High (10-7), Medium
(6-4), and Low (3-1).

B. LLM Results and Analysis

We assessed LLM classifications by comparing pre-
dictions to a set of user-defined ground truth labels.
We used a list of semi-randomly generated objects and
assigned a ground truth severity listed in the appendix.

We implemented a nominal classification using the
prompt: “Only give me a single natural number as your
response. On a scale of 1-10 (10 being severe), how
dangerous would it be for a free-moving robot to collide
with a baby? Be conservative with your analysis!”

In this zero-shot promoting, we did not included
any examples are relied sole on the LLM’s pre-trained
model. The word “’baby” was initialized as a variable and
could be replaced to represent any object. This method
resulted in the LLM achieving an accuracy of 6.45%.
We realized that, due to the poor performance, nominal
categorization is not a strong point of OpenAI’s models.
However, more sophisticated methods of evaluation must
be employed to produce more definitive results. In this
case, we have simply observed that it is a poor choice.
(Show the Nominal Single User Classification Graph)

The next method we implemented was a tri-label
classification system of (“High,” "Medium,” “Low”).
Our new prompt was: “Please respond with a single
word: high, medium, or low. How dangerous would
it be for a free-moving robot to collide with a (OB-
JECT)? Typically, classify living, fragile, or dangerous
objects as ’high,” while most other objects fall under
’medium’ or ’low.” Be conservative in your analysis.”
In addition to switching to a tri-label classification we
also improved the prompt with two features typically
used in few shot prompting. We included a preferred
for single word responses, gave examples of types of
objects and what their classifications should be, and
additionally incorporating a conservative filter in order
to give a humanized perspective on how the LLM should
be giving safe definitions.

In this new approach we also altered the method of
testing by having two accuracies, one for a direct match
with the ground truth label, as well as one with 1/2 credit
given for over classifying (ie if the LLM returned high
but our ground truth was medium) objects. The direct
match accuracy, which is the same metric used in the
nominal classification was 59.46% which is a significant
improvement. And with partial credit accuracy becomes
81.76% which moves us into the relm of this LLM
providing useful values. (SHOW THE CATEGORIGAL
GRAPH)

We tested a third method that aimed to combine the
two approaches, using nominal classification from the
LLM, which was subsequently mapped to a categorical
classification programmatically.

We used the third and second method to test the
resilience of the LLM request by taking each request
and looping it 5 times and taking the average of the
request. These results indicated that the LLM is fairly
consistent in it’s response and further showed that the
Nominal classification offers less variability.

Box Plot of ChatGPT Textual Severity Responses.

— 01-03Range
Mean Value

— Median

everity Levels (Numeric)

| ‘ ‘
- o

]

wwwww

Fig. 2: Box plot of GPT4 classification relative to
group’s average response (green)

The second major consideration was the labeling of
ground truth, as individual biases inevitably influence
what a person considers the severity of an object. All
methods were initially tested from the programmer’s per-
spective to standardize the process. However, to assess
variability and potential improvement with a more col-
lective approach, we compared the accuracy of ChatGPT
responses under two perspectives: a one-person perspec-
tive and the lab-group consensus perspective (5 people).
Under the one-person perspective, ChatGPT achieved an
accuracy of 54.05% (exact matches) and 78.38% (partial
credit). In contrast, under the group perspective, these
metrics increased to 64.86% (exact matches) and 89.19%
(partial credit). A two-sample z-test for proportions
revealed no statistically significant difference between
the two perspectives (p=0.3692, p=0.3692), indicating
that while group consensus improves observed accuracy,
the variation may not be robust enough to justify altering
the ground truth assignment methodology. Future studies
could explore alternative methods of reducing bias in
severity labeling particularly by using a much larger
group sample ground truth.

C. Gym Environment Setup

1) Environment and Task: Similar to MA Push, our
simulation environment is built on top of IsaacGym [7].
In it, we consider randomly placed cuboid obstacles
(hazards) measuring 1.0m x 1.0m x 1.0m and a target
object the 2 quadrupeds need to push. Unitree Gol
robots are utilized in simulation, with a payload capacity
of 5kg. The target object to push is a 3kg shaped T-
block, which exceeds the robots in size. The positions of
the robots, hazards, and T-block are randomly initialized
with a target position initialized on the other side of the
room. The task is successfully completed if the center
of the T-block is within 1m of the target position, and
failed if the simulation runs longer than a threshold
number of seconds, robots collide with each other or the

boundaries, or any object (including the agnets) moved
within the set boundary for the hazards.

2) LLM Integration: As a training surrogate for re-
peated API calls, we propose using uniformly distributed
random classifications of an arbitrary obstacle NPC to
allow fast and efficient training. This approach elimi-
nates the LLM integration requisite for training. As such,
LLMs are not integrated into the training loop and are
instead leveraged at the end of training as an input for
the trained policy.

3) Training Execution: Training the policies was
executed on an NVIDIA 4070 which ran over 500
environments to accumulate over 100M training steps.
Snapshots of the model policies (saved at .pt files)
are saved every IM steps for comparison on model
progression.

D. Simulation Results and Analysis

Qualitatively, we can observe the results of this in
the high level RRT trajectories shown in Figure 4. In
the figure, we observe the hazards (black boxes) and
their bounding boxes (red boundaires) which scale with
the LLM severity classification. Observing the proposed
path, notice the diversion from intersecting the bounding
box - preserving a safe distance around the hazard
relative to its classified severity while achieving the
shortest path to the target position.

In Figure 5 we see that the goal resides withing the
bounding box, and the planned trajectory stops at the
closest point outside of the bounding box - enabling a
safe interaction with the proposed hazard.

Comparing these results to a baseline test in 10
(defined as objects with no boundary) we can observe
the proposed path closely maneuvers around the hazard
to reach the target. As we have established, this may lead
to potentially dangerous or unintended behavior from the
agents when interacting with sensitive obstacles.

Fig. 3: Baseline RRT path planning with no severity
classification

6
44
.
’ L
04]
-2 |
—44
—6 4
T
0 2 4 6 8 10 12 14

Fig. 4: Avoidance of MEDIUM severity hazard in the
environment

u

0 2 4 6 8 10 12 14

Fig. 5: RRT 100M planned trajectory for infeasible goal
on HIGH sensitivity hazard.

Implementing these changes has resulted in improves
navigation, with 80% of studies using the updated 100M
RRT planner avoiding the tolerance zones established by
the LLM. However, our experiments show occasional
drift from the target boundary such as in Figure 6 -
highlighting a future direction to improve the robustness
and safety of our implementation. Even with boundary
ingress, our experiments show limited danger towards
affected hazards - with agents maintaining a safe dis-
tance from vulnerable individuals or obstacles provided
the appropriate classification.

Fig. 6: Planned path with slight failure on bottom HIGH
severity hazard

Our analysis of the also highlights further room for
improvement in the reward function and training ap-
proach. Figure 7 shows that extended training does not
correlate with higher task completion after 40M training
steps, and the completion rate is highly variable. Despite
this, the step reward during training continues to increase
in Figure 8, highlighting a potential mismatch between
our current reward function and an optimal training
configuration to achieve more frequent task completion.

Fig. 7: Completion rate per step during training

Fig. 8: Step reward during training

V. CONCLUSION

This work introduces a novel integration of Large
Language Models (LLMs) into hierarchical Multi-Agent

Reinforcement Learning (MARL) frameworks to ad-
dress the critical need for context-aware and safety-
oriented path planning. By augmenting the state-of-the-
art MA Push framework with GPT-4 as a high-level
controller, we demonstrate the potential of LLMs for
dynamically classifying obstacles by severity and influ-
encing path planning through adaptive penalty scaling.
Our approach preserves task performance while intro-
ducing semantic reasoning, enabling robots to navigate
unstructured and sensitive environments more effec-
tively. Experimental results validate the feasibility of this
integration, showing improvements in safe navigation
around hazards and maintaining efficient trajectories.
Future work will focus on further refining LLM-based
classifications, incorporating real-time decision-making
into the training loop, and addressing limitations related
to robustness in high-severity scenarios. This proof-of-
concept study underscores the promise of combining
LLMs with MARL, setting the stage for broader applica-
tions in industrial automation, human-robot interaction,
and other domains requiring advanced contextual intel-
ligence.

The source code for this project can be accessed here:
https://github.com/gravesreid/MAPush

VI. MEMBER CONTRIBUTIONS

Reid led the communication and development of this
project. His extensive contribution included setting up
the original environments for both MQE and MAPush
studies, as well as dissecting the respective code bases
to make meaningful contributions to by creating original
classes, configurations, and experiments which he ran to
test changes to the environment and policy.

Chase led the creation of the final report (this docu-
ment) and assisted in both strategizing and implementing
changes to the goal hierarchy for implementing severity
classifications in the existing MQE and MAPush envi-
ronments. Report writing included writing the Abstract,
Introduction, Related Works, part of the Methodology,
Experiments sections B-D, and the Conclusion. Imple-
mentations included experimentation with path planning
for both the high and mid-level controllers in MQE, as
well as running MAPush experiments with novel reward
functions to optimize and cross-validate trained models
against Reid’s.

Shawn implemented the OpenAl GPT4 integra-
tions and experimental studies, including measuring the
team’s classification of curated objects and comparing
them to a distribution of GPT’s classifications. Shawn
included these results and explained the methodology
for doing so in detail in the report in the Methodology
and Experiments sections.

Eric assisted Reid and Chase on MAPush implemen-
tation, working to dissect the codebase and provide sup-

port for getting the mid-level training running correctly.
Eric also contributed significantly to the Methodology
section, adding relevant equations and robust description
of our approach.

Jon provided a preliminary description of the path
planning methodology, creating a framework to build the
final section out from. Jon also contributed appropriate
citations to the document and assisted the rest of the
group throughout the semester wherever appropriate (eg.
helping Shawn setup LLM calls, helping Eric to get
MAPush running on the lab computer, etc.)

https://github.com/gravesreid/MAPush

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

C. Hong, Y. Feng, Y. Niu, S. Liu, Y. Yang, W. Yu, T. Zhang,
J. Tan, and D. Zhao, “Learning multi-agent collaborative ma-
nipulation for long-horizon quadrupedal pushing,” 2024, arXiv
preprint arXiv:2411.07104.

O. Nachum, M. Ahn, H. Ponte, S. Gu, and V. Kumar, “Multi-
agent manipulation via locomotion using hierarchical sim2real,”
2019, arXiv preprint arXiv:1908.05224.

A. Rigo, Y. Chen, S. K. Gupta, and Q. Nguyen, “Contact
optimization for non-prehensile loco-manipulation via hierar-
chical model predictive control,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE, 2023,
pp- 9945-9951.

A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jader-
berg, D. Silver, and K. Kavukcuoglu, “Feudal networks for
hierarchical reinforcement learning,” in Proceedings of the In-
ternational Conference on Machine Learning (ICML). PMLR,
2017, pp. 3540-3549.

T. An, J. Lee, M. Bjelonic, F. D. Vincenti, and M. Hutter, “Solv-
ing multi-entity robotic problems using permutation invariant
neural networks,” CoRR, 2024.

Z. Xiong, B. Chen, S. Huang, W.-W. Tu, Z. He, and
Y. Gao, “Mge: Unleashing the power of interaction with
multi-agent quadruped environment,” 2024, arXiv preprint
arXiv:2403.16015.

NVIDIA, “Isaac gym: High performance gpu-based physics
simulation for robot learning,” 2021, arXiv preprint
arXiv:2108.10470.

G. B. Margolis and P. Agrawal, “Walk these ways: Tuning
robot control for generalization with multiplicity of behavior,”
in Conference on Robot Learning (CoRL), 2022.

S. Choi, G. Ji, J. Park, H. Kim, J. Mun, J. H. Lee, and
J. Hwangbo, “Learning quadrupedal locomotion on deformable
terrain,” Science Robotics, vol. 8, no. 74, 2023.

J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,”
Science Robotics, vol. 5, no. 47, 2020.

R. Yang, G. Yang, and X. Wang, “Neural volumetric mem-
ory for visual locomotion control,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2023.

A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid
motor adaptation for legged robots,” 2021, arXiv preprint
arXiv:2107.04034.

B. Lindqvist, S. Karlsson, A. Koval, I. Tevetzidis, J. Haluska,
C. Kanellakis, A. a. Agha-mohammadi, and G. Nikolakopoulos,
“Multimodality robotic systems: Integrated combined legged-
aerial mobility for subterranean search-and-rescue,” Robotics and
Autonomous Systems, 2022.

X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour
with legged robots,” in 2024 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2024, pp. 11443—
11450.

M. Murooka, S. Nozawa, Y. Kakiuchi, K. Okada, and M. Inaba,
“Whole-body pushing manipulation with contact posture plan-
ning of large and heavy object for humanoid robot,” in 2015
IEEE International Conference on Robotics and Automation
(ICRA). 1EEE, 2015, pp. 5682-5689.

P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, and
A. Chadha, “A systematic survey of prompt engineering in large
language models: Techniques and applications,” arXiv, 2024.

Items Severity

Baby 10.0
Table 5.0
Bookcase 5.0
Chair 5.0
Laptop 5.0
Plant 10.0
Television 10.0
Phone 1.0
Lamp 10.0
Sofa 1.0
Desk 5.0
Fan 5.0
Cupboard 5.0
Mirror 10.0
Bed 1.0
Rug 1.0
Curtains 1.0
Picture Frame 5.0
Clock 1.0
Vase 10.0
Fridge 10.0
Oven 10.0
Microwave 10.0
Toaster 10.0
Mug 5.0
Bookshelf 5.0
Wardrobe 5.0
Dining Table 5.0
Couch 1.0
Side Table 5.0
Human 10.0
Dog 10.0
Cat 10.0
Wife 10.0
Husband 10.0
Car 10.0
Grandma 10.0

Fig. 9: Single user ground truth table

Comparison of Ground Truth and ChatGPT Severity Levels

10 ° ? oo oo oo

Severity Level

l+ Subjective Ground Truth
e & ° 0o ChatGPT
AP P AV AR A SRR SRR R AV A
28 25558 EESTEE B EELE 58322585855 5388E8E
BB S2fc Rt e85 2 ERRESCF S
$95%3 £ sE g8 2250z]
& [l 3 £ g §2¢ 3 0
£ 5
¥

ftems

Fig. 10: Ground truth relative to LLM output severity levels preliminary average

Fig. 11: Path planning for no interference, maintining expectged behavior

—4

Fig. 12: Path planning for sensitive object directly in optimal path

Fig. 13: Policy loss per step

Fig. 14: Hazard punishment per step

Fig. 15: Dist to target reward per step

	Introduction
	Related Works
	Isaac Gym
	Loco-Manipulation for Legged Robots
	Multi-Agent Collaborative Manipulation
	Hierarchical Reinforcement Learning
	Multi-Agent Collaborative Manipulation for Long-Horizon Quadrupedal Pushing

	Methodology
	LLMs for Object Severity Classification
	Reward Function Augmentation
	Reward Design

	Experiments
	LLM Setup
	LLM Results and Analysis
	Gym Environment Setup
	Environment and Task
	LLM Integration
	Training Execution

	Simulation Results and Analysis

	Conclusion
	Member Contributions
	References

